

Design, Build and Operation of a Passive House for the Purpose of Environmental Education and Nature Observation

Tempus - 16 september 2010

Campus Dirk Martens ... http://Aalst.KaHoSL.be

Campus Dirk Martens ... http://Aalst.KaHoSL.be

Aimed purposes

- Spreading the knowledge of sustainable building:
 - own students
 - teachers and pupils
 - in-service training for different groups
- Open to the audience to disseminate of results of our research groups
- Integrating different techniques (soft and hard) in a edicational center
- Coöperation between diffent groups of students
 - Three international building camps
 - Secondary technical school for the realisation
 - Dissertations: master in Industrial Engineering, Erasmusstudents
 - Building similar observation cabins at other locations

ELECTRABELHUT

Build and start a small documentation and educational centre realized with the passive house standard and with ecological and renewable materials

Objectives

♦ building "Electrabelhut": dimensions 8m x 8m

\$ integration research and education

♦ accessible for public

7

Theoretical background

Four parameters to obtain a passive concept:

air-tightness

ventilation

Three certificate criteria for a passive house:

- o the net energy demand for heating ≤ 15 kWh/m² year
- o air-tightness $n_{50} \le 0.6$ h-1 (tested by the blowerdoor test)
- o temperature exceeding frequency above 25°C ≤ 5%

Importance of developing and designing phase

Concept & design: building enveloppe

	Components	$U [W/m^2.K]$
Groundfloor	30 cm foamglas	0,13
	20 cm concrete or rammed earth	
Walls ad the bottom	10 cm foamglas	0,14
	14 cm brick	
	20 cm foamglas	
Walls	44 cm cellulose	0,10
	2 cm earth	
Roof	30 cm cellulose	0,14
	2 cm earth	
Double window	Double pane (1.1)	0,8
with woor frames	Single pane (4.2)	(g=0.6)
Entrance door	Triple pane (g=0.6)	0,8

Tempus - 16 september 2010

Concept & design: oriëntation

Zuid-Oost zicht

Noord-west zicht

Zuîdgevel

Commissioning team

- Contractors, Engineers, Architect, Supplier, Security manager, ...
- Students

SII

Flowcharts and Data Models

Dynamic simulations of energy performance

- SINTLIEVEN HOGESCH
- -TRNSYS: simulation of the physical and technical characteristics of the building and its equipment using one unique dynamic model
- SOLARIN (Ecofys): to optimise the implantation of different buildings on site-level with respect to the application of active and passive solar energy

Energy demand for heating

Energy Balance

17

Project planning

47

48

49

Project: VerloopHutLaatste Date: vrl 31/03/06

vergadering: voorleggen voorontwerp technische installatie in ver

Progress

Milestone

opmaken lastenboek en meetstaten voor grondwerken

aannemer grondwerken beklikt percelen

Task

Split

Tempus - 16 september 2010

Page 10

Project Summary

arch.£.Versele;???

arch.£.Versele

External Milestone

External Tasks

ing. Frans Plasschaert;ing. Jan De Nys;Koen Vandemoortel;Tijs Soberon

Building procedure and details

Ground works

Layer of stabilized sand – PE-foil

+.U.LEUK

24

Central gap 2,5 m by 2,5 m – later stage cork layer with above a loam floor

Uneveness of concrete slab – wooden base plate combined with

27

Prefabricated trusses are placed

Visually closing the pyramid

Water proofness: epdm rubber
Joints were closed by welding, using warm air of 600°C

Cabinet-making: four windows, one door

Cabinet-making: four windows, one door

Cabinet-making: four windows, one door

Intello vapour retarder – isofloc cellulose insulation

Detail insulation: foamglass – isofloc insulation

September 2007: Passive cabin was set on fire

September 2007: Passive cabin was set on fire

Cooperation with VTI, 7th year cabinet-making

November 2007: Rebuilding of the passive cabin

Whole procedure of 2007 was repeated Added: four tree trunks – wooden pillars – cellulose inside – Fermacell plates

Future plans

Placing ventilation unit (mechanical in – mechanical out)

Placing sensors (temperature, lighting, occupation, ...)

Constructing three other pyramids

Low energy cabin

Square 12m - 12m

Contact:

Lien Verberckmoes

KaHo Sint-Lieven, Experts Group on Sustainable Building and Living, Aalst, Belgium

lien.verberckmoes@kahosl.be

