

Campus Dirk Martens

Older (main)building:

build in 1970

Younger building:

build in 2003

Energy saving investments: 1.Insulate.

We have invested in additional insulation of the rooftop of the main building (+18cm)

- 1.Insulate;
- 2. Record energy consumption;

Evolution of energy consumption

 $(10 \text{ kWh} = 1 \text{ l fuel}; 11 \text{ kWh} = 1 \text{ m}^3 \text{ gas})$

Evolution of energy consumption

 $(10 \text{ kWh} = 1 \text{ l fuel}; 11 \text{ kWh} = 1 \text{ m}^3 \text{ gas})$

- 1.Insulate;
- 2. Record energy consumption;
- 3. Compare your consumption to similar situations

Surface of the oldest building: 12.250 m²

Energy consumption in 2002: 600 000 kWh

49 kWh/m².year

Surface of the new building: 6.275 m²

Increase of energy: 600 000 kWh

95 kWh/m².year

49 kWh/m².year, 95 kWh/m².year, compared to similar buildings?

Numbers published by our regional department of education:

Naam school	Bouwjaar	0pp. (m²)	Bezetting (II/m²)	Brandstof (b)	Elektriciteit (b)	Water (b) (m³/m²)	Kost energie +water (EUR/m²)
School B	1950	1.065	0,169	130	12	0,146	8
School C	1965	1.614	0,162	111	12	0,151	6
School D	1930	700	0,243	252	28	0,497	17
School E	1992	1.278	0,226	177	17	0,600	11
School F	1993	2.240	0,112	130	10	0,233	7
School G	1958	1.456	0,205	185	13	0,065	11
School H	(-)	1.714	0,173	149	17	0,283	11
School I	1929	1.690	0,269	230	21	0,523	13
School J	1958	1.042	0,185	(-)	13	0,358	(-)
Totaal		13.181	0,185	182	16	0,322	11

Tabel 2: karakteristieken en kengetallen basisscholen De Speling 2005

⁽a) Verbruiken 2005, brandstof klimaat gecorrigeerd in BVW (bovenste verbrandingswaarde)

⁽b) Betekenis codes: rood (hoog t.o.v. Vlaamse gemiddelde), oranje (midden) en groen (laga t.o.v. Vlaamse gemiddelde)

The saving of energy requires investments.

The more economic the building is, the more investment is needed to obtain the same profit

- 1.Insulate;
- 2. Record energy consumption;
- 3. Compare your consumption with similar situations;
- 4. Produce the heat near the point where it is needed

Decentralized heat production (7 fireplaces)

- 1.Insulate;
- 2. Record energy consumption;
- 3. Compare your consumption with similar situations;
- 4. Produce the heat near the point where it is needed;
- 5. Ventilation is a major cause of energy loss;

Heating season in Belgium: october→april ≈ 160 working days = **1280 hours.**

Average outdoor temperature over the heating season $\approx 5^{\circ}$ C.

Necessary amount of air: 30m³/h/person = **38 400 m³** over the heating season.

Energy needed to warm up air from 5°C outdoor temp.

to 20°C indoor temp.: 1,2 kJ/m³ °C

• 15°C = 18kJ/m³

Average **energy consumption** per person over the heating season: 18kJ/m³ • 38 400 m³ = 691 MJ = **192 kWh/person**.

At peak times there are **1500 people** on this campus. A well tuned invariable ventilation would cost **270 000 kWh/year**

Evolution of energy consumption

 $(10 \text{ kWh} = 1 \text{ l fuel}; 11 \text{ kWh} = 1 \text{ m}^3 \text{ gas})$

Possible energy savings on ventilation:

• Tune the amount of fresh outdoor air

Displayed settings: the pulsed air is a mixture of 40% fresh outdoor air and 60% recycled air.

Air mixing centre (plenum): mixes outdoor air with recycled air. The percentage of fresh air is controlled by a motor driven valves.

Air mixing centre (plenum): mixes outdoor air with recycled air

Possible energy savings on ventilation:

- Tune the amount of fresh outdoor air
- •Recover energy by heat exchange between inlet and exhaust.

Auditorium: <u>always</u> 100% outdoor air. Is this worth? Air-water heat exchange unit in the exhaust airduct and in the inlet airduct. Heat transfer by circulating water.

Auditorium: heat recovery by air/water heat exchange. Recovery < 38%

Possible energy savings on ventilation:

- Tune the amount of fresh outdoor air;
- •Recover energy by heat exchange between inlet and exhaust;
- •Control the speed of fans.

Electronic speed control of airfans. Speed is automaticaly adjusted to the load.

Reducing speed to 50% reduces electric energy to 12,5%!

Possible energy savings on ventilation:

- Tune the amount of fresh outdoor air;
- Recover energy by heat exchange between inlet and exhaust;
- Control the speed of fans;
- •Automatic adjustement of ventilation amount by measurement of CO₂ content of extracted air.

E.g.: a ventilation of 30m^3 /hour.person results in a CO_2 -concentration of 1000 ppm inside the building. In the diagram the energy need of doing this is estimated on 500kWh/year.person (we calculated 192 kWh)

CO2 concentration sensor in exhaust duct

- 1.Insulate;
- 2. Record energy consumption;
- 3. Compare your consumption with similar situations;
- 4. Produce the heat near the point where it is needed;
- 5. Ventilation is a major cause of energy loss;
- 6.Install High efficiency boilers, and make sure that condensing boilers do condens!

Auditorium: Boiler Renova Bulex (modulerend 180 kW) White smoke = condensation

Auditorium: balancing bottle makes condensing almost impossible

Fout geplaatste condensor!

- 1.Insulate;
- 2. Record energy consumption;
- 3. Compare your consumption with similar situations;
- 4. Produce the heat near the point where it is needed;
- 5. Ventilation is a major cause of energy loss;
- 6.Instal High efficiency boilers, and make sure that condensing boilers do condens!

7. Use programmable clocks